2012年5月27日 星期日

Leap,你有想過要怎麼去用它嗎?

好不容易又有一個讓人覺得有趣的發明了。這次終於是可以像Johnny Mnemonic一樣的遠隔操作電腦,也有人說是像Minority Report一樣的去看那些記憶片段。

不管如何,一下子就佔據我在追蹤的網路新聞其中的4個來源:
http://www.techbang.com/posts/9478-computers-can-also-play-leap-in-your-air-control-computer http://chinese.engadget.com/2012/05/21/leap-motion-3d-motion-and-gesture-control/
http://www.engadget.com/2012/05/25/leap-motion-gesture-control-technology-hands-on/ http://hackaday.com/2012/05/21/hackit-leap-motions-new-motion-sensor/

2012年5月25日 星期五

2012年5月21日 星期一

[引用] 台、日、中 2012 日環食創意照片大集合

日環蝕說。
可是那天台北天氣很差,我連黑底片也沒有,而且我也沒爬起來。
只好看看別人拍的。

http://www.techbang.com/posts/9467-2012-annular-eclipse-image-collection

2012年5月18日 星期五

我的新艾呸

話說,我的iPad也用了快兩年了。這一台是香港一上巿,就商請朋友的朋友在香港下訂,再寄回台灣。雖然說Apple每次軟體升級並沒忘掉我這台初代iPad,但是硬體還是弱了點,兩三次軟體升級後,明顯lag就出現了。

這次的New iPad,本來也想衝全球首批,後來因為種種的原因作罷。終於等呀等,等到台灣也開始發售New iPad了。想一想,沒打算要用電信商的方案,也沒打算要一些有的沒的配件,更沒打算去排隊。所以星期五那天直接上Apple的官網下訂單。很快的在網路上就看到他們用TNT從深圳寄出來了。不過我還是在星期二,也就是過了4天才拿到。想當時,衝去fnac的同事說沒貨了,反而上遠x網路訂購的在第二天拿到。

以下是開箱:

▲以這個盒子來看,根本全部是為iPad訂制的。TNT送到台灣,還是轉給黑貓叨到我家。那天我在路上看到TNT的送貨車又是怎麼了?


▲把iPad的盒子連同固定的拿出來,很真合。另外,這個紙做的固定器也還真厚。


▲盒子疊疊樂。New iPad比第一代薄,想不到連盒子也薄上許多。傳說這個盒子是台灣某紙廠生產的。應該是不便宜,想說減少用料要減些成本吧。


▲背面的標示。原來我的是剛產出。難怪從深圳寄出來。

▼其實,我用iPad最重要的是拿來看期刊。以下四張就是它用GoodReader來看期刊論文的表現。黑色機是初代iPad,白色機是New iPad。


幾天用下來,整體的表現相當細緻,最近準備考試,真的看久了也不像在看電腦螢幕一樣累(update,考完了,用New iPad果然考100分)。看來可以推薦給教授用了。

2012年5月9日 星期三

Box OneCloud 構想的雲端儲存、雲端硬碟

Google Drive在雲端儲存、雲端硬碟這一方面投下了一顆震撼彈,不只同時出現了M$的SkyDrive的改版,連老牌的DropBox也跟著加強程式的功能、補強在檔案連入的能力、以及異介的整合(比如,和HTC及$am$on合作)。

當大家都在問說,老牌的Box怎麼都沒有動作時,Box 也在昨天跳進來了。它廣發Box OneCloud。這是它的影片介紹。



老實說,我真的不知道這個和原來的服務有什麼不同。也許是box在ipad的程式上,多了幾個應用程式的深度整合。但是,我最需要的遠端和pc間的目錄-檔案映射功能/app並沒有"免費"提供。

我還是保留帳號,但是暫時不會去用它吧。


2012年5月8日 星期二

[引用] A bit about the diode

A bit about the diode:
Most of you already know what a diode is, but how much do you really know about the device?

The diode is a component which allows current to pass in only one direction. Originally they were made by placing a positively charged anode plate within view of a tungsten cathode in a high vacuum. By heating the cathode to several hundred degrees, the metal’s work function is reduced enough that electrons with may leave into the vacuum using only a few volts. These electrons would then be attracted to the cold, positive anode and would flow into it and out of the tube. As the cold plate’s work function was several magnitudes higher than the cathode’s, there was a greater probability that current would flow in only one direction.

While this thermionic process works very well and very fast, the heater requirement ends up making the diode quite inefficient. As a result thermionic diodes are only used when frequencies of several hundred megahertz must be rectified at very high powers; they’ve largely been antiquated by the semiconductor diode in most applications.
Semiconductors are neat little elements. When pure, they are very good insulators and will not conduct. It’s possible though, to coax these materials to either conduct electrons or holes, simply by adding some impurities to the crystal lattice. By throwing a few atoms with more than 5 valence electrons into the lattice the semiconductor will be able to conduct electrons, creating an N-Type semiconductor. Likewise, by throwing in a few electron-few atoms it’s possible to conduct holes, creating a P-Type material. By sandwiching these two types together we can form a PN junction; a diode.
With the P-Semiconductor biased positively and the N biased negatively, electrons easily can flow into the diode, jump across the small 0.7V depletion region and leave to continue on their merry way. If the diode is biased incorrectly though, holes and electrons migrate away from the junction and a very big depletion region is formed. In fact, the junction turns into a few-picofarad capacitor, and in some cases may even be used as such.
As great as they may be, PN junctions are lossy little things. Though they do a really good job of blocking reverse current their 0.7 (now, 0.5) volt depletion region will readily burn 14 watts if 20 amps are to be rectified. Not only that, but it takes significant time for the diode to ‘recover’ after a reverse-bias, thereby limiting the speed at which it may rectify. 1N series diodes are usually no good for anything more than 400Hz! UF series diodes are much faster and may operate at 100kHz smoothly, but anything more than 500kHz is a bit much to ask for. I suppose we can’t complain though, since they sure beat the hell out of coherers!
I hope you all liked this article; in the future we’ll take a look at specialty diodes!


Filed under: Ask Hackaday